NASA
Technical
Paper
2892

1989

NNASA

National Aeronautics and
Space Administration

Office of Management

Scientific and Technical
Information Division

Parallel Gaussian Elimination
of a Block Tridiagonal Matrix
Using Multiple Microcomputers

Richard A. Blech
Lewis Research Center
Cleveland, Ohio

Summary

The solution of a block tridiagonal matrix using parallel
processing is demonstrated in this report. The multiprocessor
system which obtained the results and the software envi-
ronment used to program that system are described.
Theoretical partitioning and resource allocation for the
Gaussian elimination method used to solve the matrix are
discussed. The results obtained from running one-, two-, and
three-processor versions of the block tridiagonal solver are
presented. The PASCAL source code for these solvers is given
in the appendix, and it may be transportable to other shared-
memory parallel processors, provided that the synchronization
routines are reproduced on the target system.

Introduction

Many computationally intensive problems can benefit from
the use of parallel processing. One such problem, common
to many fluid mechanics and structural dynamics applications,
is the solution of large matrix equations. Because of the
differencing techniques used in solving the partial differential
equations that describe fluids and structures systems, the
resulting matrices often exhibit a block tridiagonal structure.
The block tridiagonal matrix requires much less computation
to solve than a full N by N matrix. A full matrix requires
approximately N3 operations to solve; a block tridiagonal
matrix requires approximately N operations.

Although the block tridiagonal structure significantly reduces
computational effort, considerable time is still spent in the
matrix solution. This is especially true in many iterative
linearization techniques, such as Newton-Raphson, where a
full matrix solution is required for every iteration. Because
of this, other parallel processing techniques which can further
reduce the amount of computation required to arrive at a
solution should be investigated.

This paper presents the solution of a block tridiagonal matrix
on a parallel processor. The block tridiagonal equations
analyzed were taken from a transient rotor dynamics simulation
program (ref. 1). In this program, Gaussian elimination is used
to solve the matrix.

The real-time multiprocessor simulator (RTMPS) was used
to solve these equations in parallel (refs. 2 to 5). The RTMPS
is a parallel processor designed to do real-time simulation of
dynamic systems. The hardware consists of dual busses with

processors on each bus. A dual-port memory provides commu-
nication between the two busses by connecting processors on
one bus to the processors on the other bus. Considerable
software support is provided for one-dimensional scalar
problems by a real-time multiprocessor language (RTMPL)
and a real-time multiprocessor operating system (RTMPOS).

The potential of paralle] processing for improving the per-
formance of linear algebra routines has prompted a significant
amount of research (refs. 6 to 8). Also, a significant amount
of literature exists on the use of vector processors for linear
algebra. Since vectorization of code involves the identification
of the lowest level of parallelism (e.g., operation level
parallelism), the principles behind both areas of research are
very similar. Because of the high percentage of nested loops
in linear algebra code, the ideal architecture for most linear
algebra applications would consist of multiple vector processors.

This paper presents the application of parallel processing
using one particular architecture (RTMPS) to one algorithm
(Gaussian elimination). This combination, however, may not
be the best approach to the problem. As mentioned previously,
there are other architectures and algorithms that may be better
suited for this application. The RTMPS system was used for
this study because it was the only parallel processing hardware
conveniently available. The intent of this study is to identify
some practical aspects of implementing a commonly used
algorithm on a parallel processor. The investigation of other
architectures and algorithms will be the focus of future research.

Problem Description

The structure of the block tridiagonal matrix is shown in
figure 1. Each block row, except the first and last, consists
of three M by M blocks. There are N block rows total,
including the first and last. If this matrix is called A4, then the
general problem is to find the solution to the system of
equations

Ax=Db

where x and b are vectors, N elements in length.

A common method for solving this system is to perform a
forward elimination of all coefficients below the diagonal and
then a back substitution to solve for the vector x. This
procedure, called Gaussian elimination, is illustrated in the
following example for a 3 by 3 matrix.

ay; = aylay =1; a = aplay; a3 = aplay,
by =bilay; ap = an —ayay

axp = ap — ayap; by =by, —axb,

asz = daz —azayp

A33 =433 — a4z 43

by =b; —az b,

an = anlan = 1; ay = aplay
by = bylay; a3 = az —apay

by =b3y—aynb,

as; = azlaz; =1

b3y = bylas

(ay; ap ap X1 F b,
4y Gy 4z X b,
L a3y az 4 x3 | by
[1 ay ag Xy b,
¢ axp axp X3 by
L Q31 a3 dss x3 || by
F 1 ap ap X1 b,
Az Az X2 by
L ¢ asx as x3 | bs
(1 ap a; x |[b
¢ 1 ap Xy b,
L ¢ ay x3 || b3
F 1 01,2 0;3 x) bi
¢ 1 ap x; b,

L ¢ o 1] L X3 JL b3 i

Gaussian elimination is efficiently performed on a block
tridiagonal matrix by applying a partial elimination process
to four adjacent blocks at a time (fig. 2). The process begins
with blocks 2 and 3 from the first block row and blocks 1 and
2 from the next block row. The Gaussian elimination procedure
is applied to the matrix determined by these four blocks.
However, the process stops once block 2 in the first block row
is made upper right triangular. As a result of this process, block
1 in block row 2 is zero at this time.

This process is then repeated on the next group of blocks
starting in the next block row and continuing for the whole
matrix, moving the four-block template down through the
matrix one block row at a time. Thus, by repeating a partial
2M by 2M Gaussian elimination N times, the tridiagonal matrix
is transformed to upper right triangular form.

After the matrix has been transformed to an upper right
triangular matrix, the result vector x can be solved by using
back substitution starting from the bottom of the matrix. This
is done by solving for the last element of the result vector x,
and substituting that value into the equation for the second last
element of x (next row up). Now, two values of the result
vector are available for substitution into the equation for the
third last element. The procedure is repeated one row at a time,
proceeding upward through the matrix until all elements of
x have been solved. The following equation illustrates the back-
substitution process for the example problem.

X3 =b;
X, =by —anx

xi=b;—apx;—apx

M=
e
s{2| 3
4
1 1 2|3
) 1 [2]3
]
= | .
Z ¢
g | d
! 1|23
I
I
I 112 |3
I
i
I 2 |3
e e
| . J
| (M*N)

Figure 1.—Structure of block tridiagonal matrix.

2 |3
1 2
(a)
. J
°
2 3
® |1 |2
L 4
°
(©
®
®
2|3
(a) Step 1.
(b) Step 2.
(c) Step N.

Figure 2.—Gaussian elimination for block tridiagonal matrix.

The block tridiagonal matrix solver used in the rotor
dynamics application consists of 30 block rows. Each block
is 4 by 4. Thus, N = 30 and M = 4 for this application.

Partitioning Approach

An approach for parallelizing the Gaussian elimination
procedure was developed by examining the data flow of the
problem. A data flow diagram for the 3- by 3-matrix example
is shown in figure 3. The circles represent mathematical

operations, and the interconnections show the flow of data
between calculations. For the 3- by 3-matrix example, 31
operations must be performed. A single computer can only
execute these operations one at a time. The data flow diagram
suggests that, if several computers are available, multiple
operations could be done concurrently. The five stages of the
computations are bracketed on the right side of figure 3. Within
each stage, each vertical operation stream can be done in
parallel. Stages 2 and 4 have streams of two operations each,
while all other stages have streams of only one operation.

Most parallelism exists in the second stage, where eight
operation streams can be done in parallel. If eight processors
were available, the 16 operations of stage 2 could be done in
a net count of two operations. Stage 1 would require four
processors and could be done in a net count of one operation.
Stages 3 and 4 would require three processors and could be
done in net counts of one and two operations, respectively.
Finally, stage 5 requires two processors and could be done
in one operation. The minimum count for execution of the
entire problem is the critical path. The critical path is the
longest of the parallel operation streams in the data flow graph.
In this example, the critical path is seven operations. Since
each stage is done serially, only the maximum number of
processors in any stage would be required (eight in this case).

The data flow diagram for the back-substitution process is
shown in figure 4. There are two stages, and the critical path
is four operations. The maximum number of processors
required is two.

1 b"3

Figure 3.—Data flow diagram for Gaussian elimination (3 by 3 matrix).

b3 = x3

a3

b’y

X4

Figure 4.—Data flow diagram for back substitution (3 by 3 matrix).

The solution of the block tridiagonal matrix contains the
same parallelism described for the 3- by 3-matrix example.
In the solution process, a partial elimination is performed on
a 2M by 2M system N times. The maximum number of pro-
cessors required would be a function of M. The critical path
would be N multiplied by the critical path operation count for
partial Gaussian elimination plus the critical path count for
the back substitution. The data flow diagram would follow the
same pattern as that of the 3 by 3 matrix, only the length and
width would vary as the size of the matrix. A detailed analysis
is given in the Theoretical Speedup Analysis section.

A PASCAL-coded version of the single-processor matrix
solver used in the rotor dynamics simulation is given in the
appendix. This is a direct PASCAL translation of the
FORTRAN code used in the simulation. The procedures
GETINF, IDATA, and IDATF are related to I/0 on the unique
hardware used for this study. The purpose of these procedures
is described later in this report. The parallel structures
discussed previously can be seen in the main body of the code.
There are two main loops in the program. The outer loop (IB)
cycles through the block rows of the matrix. The next loop
(IP) does the partial Gaussian elimination on the 8 by 8
submatrix composed of blocks 2 and 3 in the current block
row and blocks 1 and 2 in the next block row. Within the IP
loop are six smaller loops which essentially perform the
operations diagramed in the data flow graph in figure 3. The
first two loops perform the divide operations, and the next
four loops perform the multiply and subtract operations. As
shown in the data flow graph, all divides can be done in parallel
followed by all multiply and subtracts being done in parallel.
This process is represented by the bracketed rows 1 and 2.
The sequence is repeated for all four IP iterations.

The code for the back-substitution process is next in the

program. Since the original code was not written with parallel
processing in mind, there are no operations which can be done
in parallel while using the code shown. Each result vector
element is found by solving one row at a time. Each iteration
of the outermost loop (IBI) depends on results from the
previous iteration. The same is true for the next level loop
(II). The innermost loops within the II loop are recursive in
nature (the calculation of a variable depends on itself from
a previous iteration) and, therefore, cannot be done in parallel.

The data flow graph for the back substitution, however,
shows that parallel operations can be done. Figure 4 shows
that once an element of the result vector has been calculated,
it can be used to calculate parts of proceeding elements. Thus,
partial sums of other result vector elements can be computed
in parallel. This algorithm, called the column sweep, is
described in reference 6. The column sweep algorithm requires
a different coding approach than that used in the rotor dynamics
version of the back-substitution process. A new version was
coded and used for the two- and three-processor matrix solvers
discussed later in this paper. The use of the column sweep
algorithm exemplifies the type of analysis required for selecting
an algorithm to run on a parallel processor.

Theoretical Speedup Analysis

The theoretical speedup for the parallel Gaussian elimination
algorithm is computed by dividing the operation count for the
serial version by the net operation count for the parallel
version. An operation is one of the basic floating-point math
operations: add, subtract, multiply, and divide.

Table I shows the determination of the operation count for
the serial algorithm for one IB iteration of the forward
elimination procedure and one I iteration of the back
substitution. The table assumes a 4 by 4 block size. One 1B
iteration consists of four IP iterations, and the operation count
for each IP iteration depends on the value of IP. For a matrix
of 30 block rows, the operation count (OPS) would be

OPS = 30(number of operations per IB)
+ 30(number of operations per IP)
= 30(370) + 30(44) = 12 420 operations

To simplify the analysis, it is assumed that the last block row
is a full 8 by 8 matrix, although it is actually 4 by 8.

The operation count for an N block row, M- by M-block
tridiagonal matrix would be

M
0PS=N{ Z [QM +2 — i) +22M +2 — DM — i)

i=1

+2M+i— 1)]}

_ N[M@AM+ 7)(TM - 1)]
6

TABLE I.—DETERMINATION OF
OPERATION COUNT

(a) Gaussian elimination

Loop, Operations Total
1P number of
Divide | Multiply | Subtract | operations
1 9 63 63 135
2 8 48 48 104
3 7 35 35 77
4 6 24 24 54
- - - - 370
(b) Back substitution
Loop, Operations Total
1 number of
Multiply | Subtract operations
1 4 4 8
2 5 5 10
3 6 6 12
4 7 7 14
- - — 44

The data flow graphs in figures 3 and 4 suggest that a number
of operations can be done in parallel. For the forward elim-
ination process, the total number of operations which can be
done in parallel is a function of the iteration index IP. Table II
summarizes the maximum number of operations which can
be performed in paraliel as a function of IP. The last column
shows the net operation count for each IP iteration (three) if
there are enough processors available to match the number
of operations that can be done in parallel. Each IP iteration
consists of a parallel divide cycle, followed by a parallel
multiply and subtract cycle. The net operation count is one
for the divide cycle and two for the multiply and subtract cycle.
Each IP iteration has three operations. As IP increases, the
number of processors that can be used decreases.

Table II also shows the maximum number of parallel
operations for each I iteration of the back-substitution process.
Again, the net operation count is shown for the case where
the number of processors matches the number of parallel

TABLE II.—DETERMINATION OF PARALLEL
OPERATION COUNT

(a) Forward elimination (b) Back substitution

Loop, | Number of Net Loop, | Number of Net
IT processors | operation II processors | operation
count count
1 63 3 1 4 2
2 48 3 2 5 2
3 35 3 3 6 2
4 24 3 4 7 2
- - 12 - - 8

operations. Based on the total operation count for the fully
parallel forward elimination and back-substitution processes
(assuming 30 block rows), the total operation count would be

OPS = 30(4 X3 operations) + 30(4 X2 operations)
= 600 operations = 30X 4 X5

or, in general,
OPS = NXM X35 operations

For the matrix used in this study, the theoretical speedup (S)
would be

12 420
S= 600 =20.7

and, in general,
S =

MOM+2-i)+20M+2-DREM— i) +2(M +i—1)
5M

i=1
_ (M +T)(TM — 1)
30

for a N block row, M- by M-block matrix.

The theoretical speedup would be achieved if the maximum
number of processors (63 as determined from table II) are
available to perform the computations. Any overhead due to
inefficient resource allocation (discussed in the next section)
or communication between processors has been ignored. This
simplification is made because of the difficulty in estimating
the time required for such overhead. The theoretical speedup
is useful only as an upper limit to determine if parallel
processing can potentially benefit an application.

Determining the theoretical speedup is more complicated
when less than the maximum number of processors is
available. The speedup will also be a function of the way the
parallel computations are allocated to the processors. For
example, if there are four parallel operations and three
processors, the net operation count would be two because the
fourth operation must be done in serial on one of the three
processors. The theoretical speedup for the three-processor
matrix solver was determined to be 2.9 based on the best
resource allocation possible.

Resource Allocation

Allocating processor resources is a critical step in running
any code on a parallel processor. If the processor resources
(e.g., the number of processors) match the number of parallel
tasks in a problem, then a one-to-one allocation can be done.
This approach is not always efficient, however, as processors
can spend much time in an idle state. In some cases this

inefficiency is unavoidable. In others, a *‘packing’’ algorithm
can be used to assign the parallel tasks to the minimum number
of processors necessary. If the processor resources do not
match the number of parallel tasks, then a packing algorithm
is a necessity. Ideally, an automated procedure would assign
the parallel computations to the available processors and
generate the appropriate load modules (to execute on the
processors). Such a procedure, unfortunately, was not
available for this study.

A technique for allocating the parallel operations of the matrix
solver to the appropriate processors was necessary. One, called
the loop-unrolling technique, would require decomposing the
loops into individual equations. For example, consider the
following loop:

FORI: = 1t0 5 DO
FOR J: = 1t0 5 DO
A(L)): = B(LJ) » CLD);

The doubly nested loop can be decomposed into 15 equations,
and each of these could be executed in parallel. Suppose that
only three processors were available for the solution of these
equations. One method of allocating the equations to the
processors would be to write all 15 equations and allocate 5
equations to each processor. Although this apears easy for the
given example, it can be tedious if there are hundreds of
thousands of equations. Another, less tedious, method would
be to use the following code segment on each of the processors:

FORI. = 1to 5 DO
BEGIN
J.=(d-1 + PID;
WHILE] <= 5 DO
BEGIN
AT = B{LL) « CA));
J: = J + NPROC,;
END;
END;

where PID is the processor identification number (in this case
1, 2, or 3) and NPROC is the number of processors (three
for this example). In this method, called iteration allocation,
each processor performs only the iterations which are assigned
to it. The preceding example results in the allocation of
computations as follows:

P1 P2 P3

A(LD A(1,2) A(L3)
A(L4) A(LS) AQ4)
AQ2) AQJ3) AG.S)
AQS5) AG4) -
AG3) A@S) -———

Total OPS 7 5 3

With 3 processors and this allocation method, the original
15 operations could be done in the equivalent of 7 operations.
Although this method is less efficient than writing 15 separate
equations, it is less tedious. In fact, by adding the following
lines of code before the J: = (I — 1) + PID line in processors
1 and 3, the allocation can be improved:

P1 P2

IFI > 3THENPID =1
ELSE PID = 3;

IFI > 3 THEN PID = 3
ELSE PID = 1;

This reallocates the A(4,4) and A(5,5) computations from
processor 1 to processor 3. Now each processor solves five
equations for a net count of five operations. However, this
analysis ignores the overhead of the added control statements.
Thus, iteration allocation is still less efficient than the loop-
unrolling technique. But for large loops, iteration allocation
is preferable since it is less tedious.

The number of processors available is a critical factor in
considering which method to use. If the number of processors
approaches the number of parallel tasks, then the iteration-
allocation method essentially approaches the loop-unrolling
technique (in the amount of work necessary to generate a
parallel program). In general, if the number of parallel tasks
is much greater than the number of processors, iteration
allocation is preferable to loop-unrolling. This was the case
for the parallel block tridiagonal solver described in this report,
which made iteration allocation the method of choice.

Parallel Processing Hardware Description

The parallel processing hardware system used to run the
block tridiagonal solver is a subset of the real-time
multiprocessor simulator (RTMPS) described in reference 2.
Figure 5 is a block diagram of the actual hardware used. The
separate processors on the real-time bus are Motorola VM04
microcomputers, rather than the VMO02 microcomputers used
on the original RTMPS. The RTX channel linking the inter-
active and real-time busses still uses VMO02 microcomputers.
In the current configuration, a maximum of three VM04

REAL-TIME BUS
[-]
wmo2 || wmos VMO4 VMO4
§
!
I/F
| RTX
MEMORY I CHANNEL
I
|
FRONT-END]
PROCESSOR vMoz |-
INTERACTIVE
BUS

Figure 5.—Subset real-time multiprocessor system (RTMPS) architecture used
for matrix solver study.

CACHE

68020 | conTRoL | CACHE

MAIN
MEMORY
(VM 13)
SYSTEM MLE?,%F'IY __l
BUS I/FF

BUS I'F

VM 04

SYSTEM (REAL-TIME) BUS

Figure 6.—VMO4 microcomputer architecture.

processors can be resident on the real-time bus. Expansion
to two additional processors is possible with the existing card
cage, but was not done for this study.

Figure 6 shows the architecture of the VMO04 micro-
computer. A dedicated memory bus connects a processor board
to a main memory board. Both the processor board and the
memory board have separate system bus interfaces. A high-
speed cache memory on the processor board reduces memory
access times for frequently referenced memory locations. The
caching of main memory is handled by hardware and is
transparent to the user when only a single processor is used.

Because of the cache memory, extra care must be taken when
programming multiprocessor systems. A processor can have
instances of ‘‘stale data’ in its cache if another processor
communicates with it through shared memory over the system
bus. To avoid this problem, processors must disable their cache
memories before accessing shared memory. One method,
although time consuming, is to call a procedure to disable the
cache each time a program requires access to shared memory.
Another method would be to disable the cache entirely;
however, there are many local-memory accesses which would
lose the benefit of the faster cache memory. Fortunately, the
VMO04 contains a control register which allows the user to enable
or disable caching of memory accesses that occur over the
system bus. This register can be set once, and cache memory
can be disabled for all shared-memory references (via the system
bus), while local-memory references are still cached.

Software Environment

The existing RTMPL was designed to efficiently handle one-
dimensional mathematical models. All arithmetic is done in
scaled-fractions, and indexed variables (e.g., arrays) are not
supported. An alternative language was needed to allow
convenient programming of the block tridiagonal solver on
the RTMPS hardware. To fill this need, a method was devised
to allow PASCAL programs to be called from an RTMPL
program. The the solver could be coded in the PASCAL
language, a structured language with floating-point and indexed
variable support.

Running the PASCAL program as a subroutine under
RTMPL maintains compatibility with the RTMPOS. This is
important because RTMPL generates a data base that
RTMPOS uses to load and execute the parallel processing
programs. Changes were made to RTMPOS to allow
recognition of the floating-point data type. Thus, many
interactive features provided by RTMPOS for scaled-fraction
programs could also by applied to floating-point programs.

An RTMPL macro was written to transfer control from
RTMPL to PASCAL. A new PASCAL initialization routine
(ref. 9) was written to save any necessary RTMPL registers,
execute the PASCAL program, restore the RTMPL registers,
and return to the RTMPL program. RTMPL variables were
used as buffers to transfer information from the PASCAL
program to the RTMPL program. Special procedures were
written to do the transfers. This represents one of the
disadvantages of the RTMPL-PASCAL approach: Neither
program recognizes the variables of the other. In order to
output any results from the PASCAL program to RTMPOS,
data must explicitly be transferred from a PASCAL variable
to an RTMPL variable. This inconvenience can translate into
high overhead if data is output frequently from the PASCAL
program. Fortunately, for the block tridiagonal solver, the only
output required was at the end of the program.

The automated data-transfer setup feature of the RTMPL
cannot be used with the RTMPL-PASCAL approach. All data
transfers must be done from within the PASCAL program.
One method for transferring data from PASCAL is to call a
procedure to do the transfer. However, if there is frequent
data transfer in the program, the overhead of the procedure
call can significantly reduce the transfer speed. A better
method is to exploit the way that PASCAL handles variables.
Variables declared in the main PASCAL program are global
variables; variables declared from within a procedure are local
to that procedure. Global variables are shared by the main
program and all procedures. This suggests that a shared-
memory multiprocessor environment can be implementaed by
using the global variable area as the shared memory. The
advantage of a shared-memory approach is that data can be
transferred implicitly between processors by a simple memory
reference instruction. The need for a procedure call to transfer
data is eliminated, thus, reducing overhead.

Figure 7 shows how the PASCAL shared-memory approach
is implemented for two processors connected by a bus. The
PASCAL compiler maintains two registers for variable
storage. The first (A5) points to the base of the global
variables. The other register (A6) points to the base of the
local variable area. If both processors (P1,P2) have dual-ported
memory, part of the memory of P1 can be shared with P2.
The PASCAL programs for P1 and P2 would have the shared-
memory variables declared first. The program code body
would be contained in a procedure call, with any local variables
declared within the procedure. Then the main program would
merely call this procedure. The structure of the PASCAL
program for both processors would be as follows:

P1 P2
BUS
MEMORY MAPS:

P1, P2,
GLOBAL GLOBAL GLOBAL GLOBAL
VARIABLE . (SHARED) |.. | VARIABLES {. __ VARIABLE -
POINTER VARIABLES (UNUSED) POINTER

(A5) (A5)

P1, LOCAL LOCAL P2,

LOCAL —u e LOCAL

VARIABLE VARIABLES VARIABLES e
POINTER POINTER

(A6) (A6)

Figure 7.—PASCAL shared-memory approach.

PROGRAM SOLVE,;
VAR
(This is the declaration of shared-memory variables)
PROCEDURE SOLVE _ CODE;
VAR
(This is the declaration of variables local to the processor)
BEGIN
(The main code body goes here)
END; (Of SOLVE _CODE)
BEGIN (Of the main program)
SOLVE _ CODE;
END. (Of program)

Since P1 has the shared-memory area in its own memory,
its global variable register A5 can be left as set by the PASCAL
compiler. For P2 to reference the shared-memory area, its
register AS must have the base address of P1’s memory (from
the bus) added to it. When this is done, all global variable
accesses set up by the compiler will automatically go to shared
memory. This approach can be used for as many processors
as required.

All PASCAL language statements except those dealing with
I/0, files, and pointers can be used. All I/O is done through
the facilities provided by RTMPL and RTMPOS. These
facilities include on-line examination of program variables and
read advisories. The read advisory provides a method for
recording large arrays of data from a program onto a disk file
(RTMPL user’s manual). This method was used for the block
tridiagonal solver to record the value of the result vector.

Discussion of Results

The block tridiagonal solver was run on the RTMPS system
with one, two, and three processors. The PASCAL code for
each of the cases is contained in the appendix of this report.

The matrix notation used for the rotor dynamics problem is
retained in this code. Array B in the PASCAL code is the
matrix of coefficients, the array C is the right-side vector, and
the array DU is the result vector. The first VAR declaration
is the global, or shared-memory area. A multiply indexed array
is used for the block tridiagonal matrix. The first two indices
(from left to right) are the row and column indices within a
block. The next index is the block row index, and the last index
is the block index (1, left; 2, middle; 3, right). The vectors
DU and C are doubly indexed arrays: The first index indicates
element within the current block row, and the second index
is the block row index. Although the use of multiple indices
simplifies the programming procedure, it is very costly in
computation time.

The code for the single-processor solver is a direct PASCAL
translation of the FORTRAN code used in the rotor dynamics
problem. Procedure GETINF is used to send information about
the variables (in this case, the result vector) to the RTMPS
control processor. Calling procedure GETINF triggers a read
advisory on the control processor which saves results in a disk
file. Procedures IDATA and IDATF initialize the matrix and
right-side vector to values that were generated by the rotor
dynamics simulation. The use of actual data from the rotor
dynamics simulation was important since the existence and
accuracy of a matrix solution depends heavily on the matrix
values. The results generated by the single-processor solver,
as well as those for the two- and three-processor solvers, were
compared to results generated by the rotor dynamics simulation
on a mainframe computer. In all cases, the results matched
exactly.

There are two versions of the two-processor solver given
in the appendix: The first contains the original serial back-
substitution algorithm; the other does the back substitution by
using the column sweep approach. In both versions, the
forward elimination process is done in parallel, and iterations
within the IP loop are allocated to each processor. This is done
with the WHILE-DO construct, as described in the Resource
Allocation section of this report. Before each IP iteration
begins, both processors synchronize to insure that the previous
IP iteration was completed. This is critical since results from
the previous iteration are needed to calculate the next iteration.
Two boolean flags, one for each processor, are used to
synchronize the processors. The flags are located in the global,
or shared-memory, area. Both processors set their respective
flags true after they have finished an IP iteration.Before starting
the next iteration, each processor checks the other’s flag to
make sure they are synchronized. Then both flags are cleared,
and the iteration can begin. If one processor is not done, the
other will wait for it. A counter is tested to exit the wait loop
if the other processor does not respond.

The version of the two-processor solver with the column-
sweep back-substitution algorithm differs from the serial back
substitution version in two ways: (1) The synchronization is
done with an assembly language procedure to decrease its
execution time. The assembly procedure performs exactly the

S ——

same function as the original PASCAL version of the
procedure (which is commented out in the listing); and (2) the
back-substitution process, previously done on one processor,
is now done on two processors. After an element of the result
vector is computed, both processors work on computing partial
results of other vector elements. Both processors then
synchronize, compute the next full result vector element, and
repeat the process until the entire result vector is obtained.

The code for the three-processor version of the solver uses
a synchronization method which is more efficient than that
used in the two-processor case. When each processor is done
with its iteration, it sends a flag to each of the other processors
in the system. Before starting the next iteration, each processor
tests for the flags sent to it by the other processors. Since these
flags are now in local memory (not global memory as in the
two-processor case), the processor does not have to continually
access the bus to test a flag. This reduces bus traffic for those
processors which may still be accessing shared memory to
complete their computations.

Another technique used in the three-processor solver to
reduce bus traffic is the copying of frequently accessed
variables from shared memory to local memory. In the three-
processor code, arrays BI2 and BI3 are local-memory variables
which contain current matrix row information used frequently
throughout the program. These arrays are loaded with
appropriate values from shared memory at the beginning of
an IP iteration. All future references to these values are made
from local memory, and the number of bus accesses required
is reduced.

Table Il summarizes the running time for each of the three
cases. The speedup for each of the multiprocessor runs is also
shown. A 30-block row matrix, with 4 by 4 blocks, was solved
in each case. For the two-processor case, results are given
for the serial back substitution and for the column-sweep back-
substitution algorithms. As expected, the column sweep
algorithm gives a faster solution. The two-processor case
shows a speedup for 1.96, very close to the ideal value of 2.
The three-processor case is less efficient with a speedup of
2.7. The reduction in efficiency can be attributed to a number
of factors: Resource allocation, loss of cache variables, and
increased access time for the shared memory because of
increased bus traffic.

TABLE III.—TIMING INFORMATION
FOR MULTIPROCESSOR

Number of Back Time, | Speedup
processors substitution sec
I Column sweep | 0.9502 | ——
2 Serial 0.5168 | 1.838

Column sweep | .4834 [1.965

3 Column sweep | 0.3500 [2.715

Several important notes are given here regarding cache
memory. All multiprocessor runs were made with the cache
memory enabled on all processors which did not contain the
shared memory. The processor which did contain the shared
memory had its cache disabled. This processor could not take
advantage of the control register cache disabling for bus
accesses (described in the hardware section) since all variables
are physically within its own memory. The single-processor
case used as the reference for speedup calculations was run
with cache memory enabled. Variables which are in shared
memory for the multiprocessor cases (and, hence, not cached)
can be cached in the single-processor case. Thus, a certain
percentage of the speedup achieved through parallel processing
can be offset by the loss of cache variables. Although it appears
that this is not a factor in the two-processor case, it may
account for some of the overhead in the three-processor case.

A synchronization problem was encountered during the
development of the three-processor solver which highlighted
one of the difficulties with transporting existing algorithms
(written for serial processors) to parallel processors. In the
Gaussian elimination process, before elements below the
diagonal are eliminated the original values are needed to
compute other elements of the matrix. Thus, the sequence of
the computations is critical. All processors would have to be
synchronized (in addition to the synchronization that must be
done for each IP iteration) to insure that the original value
of the element being eliminated has been used by the other
processors needing it. For example, consider the following
elimination step for a 3 by 3 matrix:

(1) BR: = AQ2,1);
@) AQ,1): = AQ2,1) — BR + A(1,1)/A(1,1);
(3) A@2,2): =A@,2) - BR+A(1,2)/A(1,1);
@ AQ,3): = A@2,3) — BR * A(1,3)/A(1,1);
(5) F(Q): = F(2) — BR * F(1)/A(1,1);

where A is the array of matrix elements and F is the right-
side vector. In statement (1), BR is assigned the value of
A(2,1), and the computation of A(2,1) in statement (2) will
result in zero. Statement (1) is antidependent on statement (2)
(ref. 10). Assume that four processors are available to do
statements (2) through (5) with all data resident in a shared
memory (except for BR which is in each processor’s local
memory). Each processor must execute the assignment state-
ment which copies the value for A(2,1) from shared memory
into local variable BR. It would appear, since each processor
performs the same number of operations, that each processor
could safely read A(2,1) before it is changed by processor 1.
This also assumes that all processors begin their operations
at the same time. However, timing differences between
processors, communication delays between processors and
shared memory, and load imbalances make this assumption
dangerous. This was the case for the three-processor version

of the block tridiagonal solver as it was derived from the
original FORTRAN code used in the rotor dynamics
simulation. Synchronization routines were necessary which
added overhead and resulted in slower execution.

The addition of synchornization routines for this part of the
code can be avoided, however, by examining the Gaussian
elimination process closer. The back-substitution process only
requires elements above the diagonal to compute the result
vector, The zeros below the diagonal are not needed. In fact,
the computations which create the zeros are not necessary if
the resulting upper right triangular matrix is only needed to
compute the result vector. If the A(2,1) calculation was
eliminated in the previous example, each processor would read
the correct value of A(2,1) without synchronization problems.
This approach was taken for the three-processor solver to
achieve the speedup of 2.7. The single processor time used
in the speedup calculation includes the computation of zero
elements below the diagonal. If these computations are
removed from the single-processor code also, then the relative
speedup is reduced to 2.49. This is because the single-
processor solver has fewer computations to do and, thus, runs
faster.

Concluding Remarks

An approach to implementing a block tridiagonal matrix
solver on a shared-memory parallel processor has been
demonstrated. It should be possible to run the PASCAL
programs for the one-, two-, and three-processor solvers on
other shared-memory parallel processors, if the I/O and
synchronization procedures are reproduced on the target
system. The same approach can also be extended to more
processors if they are available.

The results presented here are only a small part of the
potential research that can be done on parallel processing of
matrix solvers and solution of partial differential equations in
general. Alternative architectures exist which have the potential

10

for providing extremely fast matrix solutions. Architectures
incorporating multiple array or vector processors, such as the
ALLIANT FX/8 or CRAY X-MP, are examples. A pipelined
math unit can perform operations much faster than the
nonpipelined units found in typical microcomputers and main-
frames. The key to tapping the potential of these architectures
is the identification of at least two levels of parallelism in a
given problem. The first is the operation level, which
corresponds to the vectorization process done for single vector
processors. The second is the vector operation level. Par-
alielism here consists of multiple vector operations which can
be done concurrently.

Another high-potential research area is the investigation of
alternative algorithms, given an architecture which can exploit
the natural parallelism in the algorithm. There are many highly
parallel iterative algorithms for solving systems of equations.
Among these are successive overrelaxation methods (SOR)
and conjugate gradient methods. Given an appropriate
architecture, these methods could potentially yield higher
performance than the Gaussian elimination method.

The selection of an appropriate algorithm for solving any
problem on a parallel processor is a function of many
parameters. NASA Lewis Research Center is currently
constructing a hypercluster system to provide a test bed for
investigating architecture and algorithm interactions (ref. 10).
The combination of multiple vector and scalar processors in
a flexible interconnection scheme will allow a wide variety
of architectural concepts to be studied. It is hoped that future
work using the hypercluster will answer some of the questions:
regarding appropriate architecture and algorithm combinations
for both computational fluid mechanics and computational
structural mechanics problems.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, November 17, 1988

Appendix - PASCAL Program Listings

Single-Processor Block Tridiagonal Solver

1< 0) 0)-— FROGRAM SOLLVE S}

2¢ 0)

3¢ 0) 0)—- TYPE

4¢ 0> 03—

G 0 0)-—— RVECT=ARRAY [l..4y1.,321 OF REALS

4¢(0)) AMAT=ARRAY Lles4sls4rl,03291..30 OF REALF

7< 0) 0)—-

a¢ 0y 0)-- VAR

k4 0) 0y

10¢ ~12288) ()~ AyE : AMAT §

1i¢ ~13824) 0)— ForCeDU 4 RVECTS

12¢ ~13832) 0)—- e w B3 4 REAL $

13¢ ~138546)) 4

14¢ ~13874) 0)— :

15¢ =-13892) 0)— ¢

14¢ ~13892) Q)

17¢ 0) 1)—— PROCEDURE GETIMF(VAR ADDR ¢ RVECTS: NUMEL ! INTEGER) 3FORWARDS
18¢ o)

19¢ 0y 1 JCEDURE IDATAC VAR MATRXA ¢ AMAT: UNUM § INTEGER) 3$FORWARD$
20¢ 0y FROCEDURE IDATF O VAR MATRXF ¢ RVECTS UNUMZ ¢ INTEGER) FORWARD
21¢ 1) 1)

Rk TDATF ASELIMED EXTERNAL

XKEK TDATA ASHSUMED EXTERNAL
ORXK GETINF TER

22 I Y
24 20—

24 3 0)—-

25 4 0y~ .

26 5 0)em

27 0)--

28 6 0)—— IDATAC E»1536)3

29 7 0y~ IDATFC Csi28 53

30 0)=

31 8 0-- FOR IE:= 1 TO N DO

32 9 01— FOR IFi= 1 TO 4 DO

33 0) BEGIN

34 10 0)—- BFi= BC IF>IFyTEYI2 15

35 10— FOR Ji= IF TO 4 DO

36 12 00— BL IFsJyTE»T2 1= B IP»JeIEsT2 3 / EF3

37 13 0)—- FOR Ji= 1 TO 4 DO

38 19 0)-- BL IFsJdeXE2I3 3= BL IPyJyIE,13 1 / EBF;

a9 15 0)-- CCOXFyXE 3= CL IF,IE 1 /BP;

40 16 0)—- IF TP x4 THEN

41 0re- SIN

42 17 0)e- Tit= IF + 13

43 18 0)-- FOR Ii= T1 TO 4 DO

44 0D~ EEGIN

45 19 0) ERi= BC TrIFsTE,T2 13

a6 200 0)—- FOR Ji= IF TO 4 DO

47 21 0)-- BC O LeJeIEeT2 23= BE TobeIE,T2 1 ~ BR % B IFsJsIE,IZ 15
48 22 0=~ FOR Ji= 1 TD 4 DD

49 23 0)—- BL LrdsTBrT3 2i= B TedsTIET3 1 ~ BR % BL IPsJsIE,I3 G
50 24 0)-— CL TrIE 3%= CC TyIE 1 - BR X CC IFsTE 13

51 03-D END} [FOR L2

52 0)~C END; CIF TP

53 25 0)~- IF I < N THEN

54 e~ BEGIN

55 26 0)=- FOR Ii= 1 TO 4 DO

56 0)D- BEGIN

57 27 0 TELt= IE + 13

58 28 0)-- BR$= BL LrXF,TE1,TI17:

59 29 0)— FOR Jt= IF TO 4 DD

&0 30 0)— EL TrJyTEL,TI1 M= BL TrJdsXIELeIT1 I ~ BR % BO IF»JyIE,I2 13
61 31 0= FOR Ji= 1 TO 4 DO

62 32 0)-— BL TrJyTEL,I2 8= EL ToJyTEL,T2 1 — BR x BL IFsJyIR,I3 13
63 33 0)~- CC I,IBL 3= CC I,IEL 1 ~ ER % OO IFsIE 1%

64 0)-D ENDS CFOR T2

65 0O-C END3 € IF IEI

b6 0)~E END; [FOR IF2

&7 34 0)-—- FOR TEXt= 1 TO N DO
48 0) - EEGIN

&9 3G 0)m-
70 346 0)—--
71 37 0)—-
72 00~
73 33 0)——
74 39 0)--
75 40 0)—-
764 050
77 41 0)— Jit= T4 13

78 42 D)= FOR Ji= J1 TO 4 DO

79 43 0)-- DU Xyl A= DUC TyTE I - BL TeJyTE,XZ 1 x DUL JyTE O3
80 0)-D ENDS O TF X
g1 44) TIF XE <= NOTHEN

82 0D BEGIN

83 4% 0y FOR Ji= 1 T0O 4 DO

84 44 0)-- DUE TeXE 23= DU TyTE 1 - BC TedeTESTZ D x DUC by TEL D5
85 0)-D END: [IF N

84 0~ ENDF I FOR T D

87 0) -3 END{ L FOR XET

68 47 0) : 283

89 48 Q) NFC DUy D3

20 0)-f

E At= -1.0 X CF TeTE 13
4 THEN

kK NO ERRORCS) AND NO WARNING(S) DETECTED
wRKX 90 LINES 3 PROCEDURES

®X¥X 944 FCODE INSTRUCTIONS

Dual-Processor Block Tridiagonal Solver; Serial Back Substitution, Processor 1

0 0)—— PROGRAM SOLVE}
03 0y

0y D)= TYFE

0) 0)--
a4y 0y}
0y 0y
0) 0)—-

CRAY Lk o4yl 320 OF REALS
AT DLleatsde 4yl .32y1,.31 OF REALG

~&1L44) By 1]
=7168) 0y CrDU
=7170Y 0 BYNCL y SYNC2
-7170) 0)--—-

0) 1) FROCEDURE GETINFC VAR ADDRIRVECTS NUMEL IINTEGER) $FORWARD

0y 1ye-

0) Lye FROCEDURE FUTINTC IVALLIINTEGER: VAR IFTRIINTEGER) 3iFORWARDS

0y 1)

0) 1) FROCEDURE IDATAC VAR MATRIXA ¢ AMATE VCNT § INTEGER) $FORWARD

ay)

) 1)~ PROCEDURE TDATF ¢ VAR MATRIXF ¢ RVECT: VONTIL § INTEGER)3 FORWARDS?

ay 1)

) 1) PROCEDURE COPROC $

0y 1)

0y 1) CONST

0By 1)

0) 1)~ CMAX=10000003

[R ViR

0y | -
~&L44) 1 d 2]
R T I R ¥
~hAHOA4Y) FiF o E3IR
=&HEBY L)
-G08y 1)
—bOTIAY Ly
~&F34H) 1)
B Y4575 M B RS
~673H) 1)

. v we

BOOLEANS

AMAT §
RVECT?
REAL. ¢

42 2o er e e v

! SEGTM
2 1y SYNCIL s =Fal.SE

40
42
43
44
45
44

48
49
50
5
s
54

b
a7

112
113
114
115

4

pw}

&

a8
?

10
i1

12

13
14

14
17

18

20
21
22
23

24

e
25

24

27
28

29

30

31

32

33
34
35
3é6
37
38
39

40
41
42

43

44

45

44

47
48
49

G0

51

»
52

Lai=24
TB3=34

N=30F

IDATAC
IDATF (

Ey1G36)4
Cr128)3

SYNCL S =TRUE?
FOR TEI= 1 TO N DO

FOR TF3= 1L TO 4 DO
EEGIN

™

SYNCZ L =TRUE §

ERRE=ERR + 13
END$

UNTTIL. SYNC2$

FALSES

GYNC2 =

TFY TPy TRy X2 2%

w4 D)

N
H

TP TESI2 12

XF e XES I3

+ 23

= EL

. : =)

END$
COOTRy IR 3= QL TPyL 1 ZBFF

w4 THEN

Tii= TF
FOR Tt=

+ 13
T1 TO 4 DO

WAoo ==

N N 0 W WA

=4 DO

AL LeJy TESTZ L X
Ji= o o+ 2%
END #
SR

WHILE

1i= B

J o= 4 DO
IN
[LedyTE,I3
iz o+ 2%
END ¢
O TeTE 3= (L
ENDF L FOR I
CLF TR

END
IF IB <x N THEN

Ad= B X

T LE

= 1 TO 4 DO
N

P+ 13
TrXf ey TELsTXLOG

IF

MR
WHILE J
BEGIN

<= 4 D0

[Teddsy TELyXTTL 3= B

Ji=ou) o+ 2%

= BLOIFeJds iy 12

TP ey LEY I3

1 - BR

1 /7 BP3

1 7 BEP3

e XEST2 0 -

RN AT 6 B

® CC

Trdy IRy TT

TPy Ii

L SYNCHRONIZE WXTH FROCESSOR 2

B

R

1 BR

1

® B

® BL O TFsJyTBPXTZ 14

b Q= S PRV W 1 i B

TFyJs TE T2

Y

13

116
117
118
119
120
121
122
123
124
125
126
127

14

IDATE
IDATA
FUTINT
GETINF

{4
55

G4

57

&%

b4
&7
68

&9
70
7l

72
73

74
75

&1
22
83
g4 1)

2EGTIN

B TeJdeTEL»T2 M= BL LrdyXEL+I2 3 - BR x BL XFyJeTE,I3

Jism o) o+ 2%

END #
Cr LTEL J3= CC T»XE1 1 -~ BR x CC XRsTH 23
ENDS CFOR T
END} [IF TIE]

SYNCL=TRUE

EMD: L FOR TIF3J

HONTL =203
REFEAT [SYNCHRONIZE WITH PROCESSOR 2 1
CNTL 3=GONTL+1 3
IF QCNTL = CMAX THEN
FHEGIN
GYNC2 ¢=TRUE
ERRS= ERR + 13
END ¢
UNTTIL SYMC23

FOR TEXE= 1 TO N DO

| - IETS

- 18

L T 4 DO

TeTR %

:::-::::: 4 DN

COLeXE D3m DUC TeXE D - B XedJde TEYIZ 0 ok DU JeTE LS
= o4 1%
END ¢
ENDS © IF X
TE < NOTHEN

w4 DO
N
PUC TyXE Jt= DUL THXE 1 - BU TedyTE,IZ 0 x DUT JyTEL 3
NEENIEAE T
END;
ENDS [TF TE == N)
ENDS [FOR IT 7
END; [FOR IEL 1
FUTINTC ERRyTFTR 33
FUTINT(SCNTLeXFTR)3
(128
GETINFC DUsK)3

LA EMDE L CORROC)

19

AGSLIMED X

ABSUMED

AGEBUMED EXT

ASSUMED
8% 0)A-
86 0)--

CRINGL.
N
NAL.
N

G
COFROCS

0)-A END.

kK NO - ERRORCE) AND NO WARNING(S) DETECTED

MK

KEKAOR

175 LINE

5‘5

5% FROCEDURES

L0766 PCODE INSTRUCTIONS

KH

Z21¢
22¢
23¢
24
25¢
26¢
27 (
28¢
29¢
30¢
31¢
32¢
33C
34
a5
36
37
38
39
40
41
42
43
44
45
44
47
48
49
50
51
52

[t
R I

G4
55
%é
B/
58
H9
60
&1
[y
&3
&4
65
b6
&7
68

)

0)

0>

0>

03

=& 44)
665G)
~bbéH4)
~&6HBH)
-6708)
b7 24
~6736)
b7 34)
L

2

3

4

5

éb

7

2]

9

10

11

12

13
14

20
21

22

e

24

FROGRAM 501.VE

TYFE

RUVECT=ARRAY [Lls.99 14,320 OF REALS

AMAT=ARRAY Ll.a491..49r1,.32,1..31 OF REALS
Uik

] : AMAT §

CaDU H RVECTS$

SYNCLy GYNC2 : EOOLEANS

FROCEDURE SETAT

TOFFST ¢ INTEGER) 3FORWARD

FROCEDURE. FUTINT(TVARIINTEGER; VAR TFTR:INTEGER V3 FORWARD 3

FROCEDURE COFROC

- CONST

CHMAX=10000003

~

*

VAR
A : AMAT 3
F : RVECT §
[EF y B3R : REAL.#
NrLrdyIBsIFyL1 : INTEGERS
IZyT3rILLyK L : INTEGER$
Ty 1y TEX : TN
GONTZ yERRy TFTR :
- BEGT
SETAGC 144300000 >3
SYNCZ 2 =TRUE }
IFTRI=0}

SONTZ21=203
ERR =03

L SYNCHRONIZE
GONTZ 3=8ONTZ2+1 3
TF GUNTZ = CMAX THEN

EEGIN
SYNCL=TRUE
RR= ERR + 13

END ¢

UNTIL SYNCL?
SYNCL= FALSES

B XFsIF» TEXT2 13
+ 13
o4 DO

LoXFydr XEST2 42

Jt »-.J+23

WITH FROCESSOR

= B0 XFyJdeTEYI2 T / BF3

11

15

1<

G

&7

28

2 4 DO

A= BEL

Tyl B LI

+ 2%

Wi

END $

1

L TD 4 DO

20X
- 13

B Leds TEYILZ

Ji= oo+ 23

<= 4 0O

Jimoo+ 2%
END #
o FORDD
S W
THEN

43

44 = L TO 4 DO
4%

44

T 0 I

o+ 3

48

Lo TEL»TLL

4 DO

END§
SYNCZ
ENDS L

FLUTINT ¢ ER
FLITEINT(
END3 GO

NTZ2yTHTR)3
{1

FUTINT

D EXTERNAL
SETAD |

> K CRINAL.

0)-A END.

*KAK NO ERRORCS) AND NO WARNING (S DETECTED

KEKAOK 127 LINES 3 FROCEDL

]

KRKK 717 FCODE INSTRUCTTIONS

y LR LE T2 13

[TyTFsTELy T3

3

TF ey TE L3

Ji= BL Xedr LB X2

Lodey TEYIB A8= EL

1N

= Bl

Lrdr LRSI

1 7 BFS

1~ BR % BL

1 - BR x B

Trdy TELyTTL 1~ BR o w BC

TedsTELEZ 1 — BR w B

Dual-Processor Block Tridiagonal Solver; Column Sweep Serial Back Substitution, Processor 1

03 FROGRAM STLVE R
)

By)

TYEE

ORIGINAL PAGE |s
OF POOR QuALTY

TPy Jy TE»I2

TFyJdsyTES I3

TP s XE T3

THeJdy LEXZ 15

——— e

ORIGINAL PAGE S
OF POOR QUALITY
4 1)

5 [1D]
438 0y 0)'"--

REALS
rde a3 0F

QY RAY Do dylen320 OF
AMAT=ARFAY Cdeadrloefsle 32

R AL

7(
3¢
EX¢
10¢
11.¢€
12¢
13¢
14(
15 ¢
16¢
17
l‘l(

o(‘\
lirs
58
HY
[a31)
&1
&2
&3
&4
&%
&b
&7
&8
&9

71
72
73
74
7%
74

/8

79 pala
g0 23 J o 4 DO

0
([
o)
~&144)
-7 1680
=770
STAYAY
0)
03
03
0>
)
0y
0

Ui

0rwm B
orgult!

- FROCEDURE

- PROCEDURE

PROCEDURE
FORWARD #

SYNCL» SYNCS

[(lUl. EaN?

GETINFC VAR

PUTINT ¢ TVALSTNTEGERS VAR TETRIINTEGER) 35F

GYNCROC VAR EFLGONT? TNTEGERS

MAXCNT S INTEGERS VAR SFL

ADDRRVECT . NUMEL $ INTEGER) sFORWARD 3

ORWARD 3

0 EROCEDURE TDATAC VAR MATRIXA ¢ AMATE VONT s INTEGER) 3FORWARD S
0 .
o - PROCEDURE IDATFC VAR MATRINFE 3 RUECTS WONTI 3 CINTEGER)3 FORWARDS

D)
0>
0y
o)
1D
0)
03
0>
-6144)
= &HEH)
~66HE64)
- &HHEE)
67 08)
&7 24
~&736)
Y.yt 1)
67 34)
1
2
3
4

15

FROCEDLIRE

- CONGT

VAR

1y A
1y F
i o B
Ny
1y L2

vudy

vIJrLTI rhn]]

BEGIN
BYNCL L=
TETRI=04
pEIW

THATAC
TDATFC

SGYNCGL s

LNTTL.

GYNOR S

COFROC ¢

CMAX=10000003

e 24 2T 28 ve oH e

=F LSS

14

MY =03

By 1536 D F
Cri28)3

=TRUE #

T N DO
= L T 4 DO

FNi);

-.)YN(,A L4
FaLSE$

gm o400

A

ey TE e TE T2 13

4

s e wr wE

o
SYNCHRONIZE

A LSy e L2

WITH FROCESSOR

NI = i

21

GIEOOLEAN)3

17

81
€62
83
34
8%
86
87

89
90

92
93
94
o
96
%7
98
99
100
101
102
103
104
10%
104

24

25

24
29

30
31

32

33
34

o

3

36

37

40

41

42
43
44

4%

44
47

49

]

AL TPy Jry LES TS M= BL XF»JeIEX3 1 7/ EFS
=)o+ 2%
END §
G TRy LR D3== CL TIPsTE 1 /BFE

= 4 THEN

- L

L TO 4 DO
TrIFyTEYIZ 13

wm 4 DO

TrdsTESTZ 8= BL TrdsTETZ 0 -~ BR ® BL IFyJoLEIZ 15
J o+ 2

“= 4 DO

D TeJe TEYI3 D= BE Loy XELTR 1 - BR x BD JF»JyIE,I3 5

Jimod o+ 2%

dt=

G LyIB 2 — BR x CL XPyXiz 13

R
TyIFeTELYTXYL 5

<m 4 D)
AEGTIN
B Tods XEL,TXL Jt= BL TedyTEL,TXL 0~ BR % BL OTFPyJs TEY X2 13

Jimo) o+ 2%

J oS4 DO

AL Le sy TR T2 Jte= B Loy TELLTZ 0 - BR oK BL XFJeTET3 13
=) o+ 2%
EINEY §
CC O XyTEL 23= CO TXE1L D~ BR x CO XRTR I
ENDS CFOR T

3 L IF TE3

Li=TRUES

END? L FOR XFD

SYNCROC ERRySCNTL1 yOMAX SYNCZ 3
t= FALSES
| 3=03 1
T A I SYNCHRONIZE
SONTL =GONTL+13)
TOBONTL = CMAX THEN)
SGTN 1
SYNC2=TRUE R 1
FRR = ERR + 13 1
END § a
UNTIL SYNC2S]

WEITH PROCESSOR 2 1

w4 DO

ULy TED= o0 % CUX,TEDS
(3= o+ 23
END$
END #
SYNCL E=TRUE $
HYNCRK Ky SONT Ly CMAK s BYNCZ)3

SYNCZS L.BE S

158
159
160
161
162
163
164
165
166
167
168
169
176
171
17e
173
174
175
174
177
178
179
180
181
182
183
184
185
184
187
188
189
120
191
192
193
194
19%
194
197
1980
199
200
200
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
250
221
222
223
24

225

224
AR XX
0K WK
KK
AHKAK
KKK

227
228
229

IDATE
IDATA
SYNCRQ
PUTINT
GETINF

64 sTt= 1 TO N DO

&5 - TE’-T $
&b
&7
[35]

N+]

1= G4y TEDS
2 4 DOWNTO 1 DO
&9

T1t=T-13
70

NOT((IE- = 1) AND (T =

73

7%

74
77 == 4)
743
79

Jimd o+ 23
END$
END}
B0 SYNCROC ERf S
a1 :
B2 1)—-
83

SONT L » CMAK s SYNCZ) 5

Tivl
HYNCI S
END 3

END ¢

ESTITUTION]
1 70 N DO

.IIE'I 3

= ~1,0 x OO ToXE %

IJU[= DUL TeXIE 1 — BC

Ji=oJd o+
END #

TXE
1

4 DO

d3= DUL TyXE 1 - ELC

ENDE
FUTINT(
FUTINTL

ERRyIFTR)3
SONTL1»IFTR

84
85
84
87

)3

: DU D3
F CUFRﬂL hj

AfaE UML.) EXTERNAL
ASBUMED EXTERNAL.
ASSUMED EXTERNAL
ASSUMED EXTERNAL
0)A- BEGIN
)~ COFROC$
0)-A END.

88
89

1)) aND (L <

Gy TED ~ BLJy L TES

1)) THEN

23 % DUCT»XES

LLJ;I! 123= CLJyTELD - BLJyTrIEL,30 % DULTLTEDS

TrJsXIELT2 3 x DUL JyIE 13

TvdsTET3 3 x DUL JrIEL 13

XRXK NO ERRORCE)Y AND NO WARNING(S) DETECTED
KKK 229 LINES & PROCEDURES

*¥X¥X 1199 PCODE INSTRUCTIONS

Dual-Processor Block Tridiagonal Solver; Column Sweep Back Substitution, Processor 2

Dy 1))
0> 00
0y 03w FYFE

AY Cha a4yl 320 (

AMAT WO Ldeadyla oyl

Vil

]
DU
SYNCLy SYNC2

AMAT ¢
FRVECT 3
EOULEANS

v re aw

=717
-7170%
1)
03
03
0>
0)
0%
(1)
L]
0)
0>
0
0
0)
(]
0)

- FPROCEDURE "AGC TOFFST 1 INTEGER) #FORKARD

FROCEDURE FUTINT O TUARTINTEGERS VAR TPTRIINTEGER)3 FORWARD S

SYNCROC VAR EFLGy CNTIINTEGERS MAXCNTIINTEGERS VAR SFLGIEOOLEAN

CONE

CrHdX=1000000 3
Vil

AMAT$
RV

—G664)
b8 Y
&7 08)

&7 24
G736
&7 3D

1

re 20 27 24 ve 2o ve

~
-

1TO N DO
= T 4 DO

EREy GONT2y CMAX s SYNCL D3
() 1

A £ SYNCHRONTZE
INTZ4 3 1
= GMAX THEN

WETH R

&
&l
&2
63
&4
65 14

1
3
o 1
il

8

29
100
101
102
103
104
105
104
107
108
109
110
111
112
113
114
1145
114
117
118
119
120
121
122
12¢
124
125
126
127
128
129
130
191
132
133
134
135
136
137
138
139
140
141
142

17
148
19

20
21

22
g
l-{ i
a4

et
a5

24

27
28

29
30
31

32
34
34

3%

2
37

28

40
41
42

43

44

46
47

48
49

y1]
%éh
L4

58
55

60

&1

TE S TPy TES L2 15
13
“= 4 DO

. TFyJe XELT2 U= BC XFyJde TEY L2
R
END $

Jle 2%

o w4 D0

N

R 0 SERY PN T e B
Ji= o) o+ 2%

END§

-
)
3]

4 DO

2 W W S 0 0 i
' I+ 13
WHYLE J <= 4 DO

GIN

L Ty TELTZ 3= BL XeJeXE» T2

i o+ 2%

END

= 2%

BL TyJsTE,I3 2= BL XrJdyXE,I3 1 - BR x BL IPeJeXELI3 13

Ji= oJ o+ 2%
END?
END} L FOR X
CXF T
= NOTHEN

SEGIN
FOR Ti= 1 TO 4 DO
BEGIN

t= TE O+ L3
x p XFy TEL» TT1 0%
13

X

WHILE J <= 4 Df)
EEG

Jisoa) o+ 2%
END 3§
END: CFOR T
END: [TF XE2
SYNCZ S=TRUE §
ENDS T FOR TP

SYNCROC ERRy SONT2yUMAXy BYNCL)3
SYNOCL ! =FALSE S

[pTEDS= 1o w CLX,TEDS
Li=1 + 23
END $
END §
SBYNCZ2 =TRUE
SYNCRO(E
SYNCL L =FalLSE

FOR TEL$= 1 TO N DO

1/ BF3

= B TPy TE X3 0/ BFS

1 - BRox BLCOTFsJs TEXTZ 33

- L oLedsyTELT2 A= B TedsTR1L,T2 0 ~ BR x B TFJsTE, (3 13

21

62 | - T3
- 13

Jem CE4yTEL

4 DOWNTD 1 DO

64
&5

EEGIN
I1i=1-1%
TF O NOTCCLE = 1) AND (T = 1)) AND (1 <= 1)) THEN
BEGIN

&b
&7

68
&9

CCCJy TR CEJrTET - ECJyTeTE21 % DUCTsTET;
NIT

END §

72

73

74

7%
74

s CUyTELT - BCJ» Ty T30 % DU, TR

E:'.NI'.);
END $
SYNC2 $=TRUE

77
78
79

SYNCROC FERR ‘)(:NTT.’. rCMAXy SYNICYL 33
BYNCL f=FalLSE
N0 §
END$

80 1) PUTINTC
2L 1)-- PUTINT(
1 I-A END? [

)i

SYNORO
HOKIOK FUTINT
XKHOKK GETASG
178 (55’12
179 83)= :
180)R INI).

0) A~

KK NO ERRORCS) AND NO WARNING(S) DETECTED
XRKK 180 LINES 4 PROCEDURES

KKK 1040 FCODE INSTRUCTIONS

Three-Processor Block Tridiagonal Solver; Processor 1

0%)
1]
L]
0y
0
{1y
03
D]
a)
1]
)
<(.’ 1 "’[‘I)

Mt BOLVE §

TOREML

4 AT ¢
H RVECT

FROCEDURE GETIMFC VAR ARDRIRVECT S MUMEL SINTEGER) FFORWNRD §

FROCEDURE FUTIMTC VAL S INTEC

Vel TRTRTINTE

¥ AFORWARD 3

FREDCEDURE SYNCROZ O Vak SYNDINF ¢ INTS) dFORWARD ¢

woe PROCEDURE TODATAC Vel MATRIXa 3 AMATS VONT 1 INTEGER

Y FFORWARD

22

PROCEDURE. TODATEC YaR MATRIXF ¢ RUECTS VOCNTL 3 INTEGER) FORWARDS
PROCEDURE COPROC §
- GONST

CMAX=1000000 3
VAR

LSy LY P BLE LS

s 2 e TP e se e e

TGS

TIDATAC B 15346 33
IDATFC Crl28)3

TO DO
0 4 B

= 4)

TFedyXELX2 13

BRI 5 W WSV I R0 S i
RSN I S
FND

J e RIZ20.) S BRS
vode TES L2 = BI2D O

ey

w4 D)

Mw ELB0 S D/ OBFS
EISC o 13

WJ

PR ENY E O 41

END §

24

40 THEN

4 Ctm LLYOD 4 DO

42

2 WY A0 B S 0 =

43
44

b

24 ?

28

4
0

k.l
EMND S

roFOR L
B o

S 4T

K3

EMDE L

BYNCEROZ O SYNCTAR)3

TeudpTEL L2 Dta=

H

EERIN .

= 43)

CETUTTON AL GORTTHM

< A D)

=1a 0w CLXy TR

&3

L5

SYMURDZ O SYNCTAR 33

R [

1) AND (T =

LYy e

I8 I 155 NN O 101 M I 1N

B T XEL

7o B

L

- B BB L)

a1 BRoxe

THE M
b A I Y I S0 W RN

CL o 1) THEN

ORIGINAL PAGE IS
OF POOR QUALITY

1%

ORIGINAL PAGE IS
OF POOR QUALITY

10

N 10 W 0 W 0 T] WO O A W A DU

- BUSe Ly XEL o370 20 DY e

HACAA
HOROR
XK IS
AHKOK
KK

RCIF AND NO WARNIMG (5 DETECTED

w208 1L

b PROCEDURES

Aok LGS0 POODE THNSTRUCTIOMS

Three-Processor Block Tridiagonal Solver; Processor 2

1 OF 0
20 0y 0o
3¢ 0% 1)) enm

4 0 0 TYEE
5 ¢ Dy o

&¢ 0 0 :F
- D 0y ARRAY 1.4 DF
B 0y m RO VR TS B
P Oy 1) TN A R T A SO I

10¢ 0y 0)--
M)

FR MM S0LVE:

HEALS

Qe s 2T OF REMLF

i AMAT 3

.
B p
[DEANIN] 4 RVECY 3

FROCEDUIRE 3 FFORWARD ¢

VAR TFTRIINTEGER) 3 FORMAaRD 3

3 e FROCEDURE PUTINTO TUSL S INTE

FROCEDURE. YN

GO VAR SYNCIME 2 OINTS D SFORWAIRD?

- PR

CEDLRE COFROC 3

- GONST

25

59

40

41

N

rr v 2% e 22 oh 22 ew

)

ey

LoTaoM Do

LYo 4 DO

f

)3

THEN

=

w2l

T 4 DO

Ly P Lk L

KH

ORIGINAL PAGE 15
OF POOR QUALITY

42

A4

4%

A

g

48
4%

&9

60

[

&2

I

&

74

ORIGINAL PAGE IS
OF POOR QUALITY

TodeTETZ His B0 TedyTEL2 1 - BRoX EI20 05
s ok 33

S 1)

U = S A) i W R

Lo e B, T O3m BRI
S KE

Jim

END $

TeXIFeTELLTXL M

XF o+ 13

J o 4 D)

M

Tads TRLSTTL 3= BL e TELITL 1 - B ow BLZC
Jts oo+ 3§

“m 4 DO

Ty de TEL TR Dm BUOTy e TR LT - £Row RXEL)
J o+ KE

2 THEN
Jiw CUOLeXRL D - BRox 0 XPSTERODF

FMEY
AYNCEO2CC SYNMCTAR)3

EACHGUIBSTITUTION ALGORTTHM

w G

N ¢
SYNCROICO SYNCTaER

LOTOON DO

13
s G A TES
A4 DOWNTO L DO

1y AND (T o= 1) AND (X =T 1)) THEN

- BTy TR 20 x DUL T XE?

27

P GO TELY ~ BEJy T LELy30 % DUy LEDG

03~ e
03— END.

secon WO ERRDIRCSG) AND NO WARNING S DET

sk 2003 LD 4 PROCEDURES

ok L1 07 PCODE TNSTRUCTIONS

Three-Processor Block Tridiagonal Solver; Processor 3

a Rt ST S
0
(i
i
13
0y
3
1
(13
i
07
&L 44D

P

TOF) FFQRMWARD 3

Y AFORMWARL S

PROCEDURE FUTIENT O XVAL S INTEGERS Vak TRTR TNTE

SYNC SO VAR SYMEINF 3 TNTE

JOFDLRE COR RO §
- CONGT

CMes=1 0000003
Wik

e se 2w

+r 2o et 2o an

ORIGINAL PAGE IS
OF POOR QUALITY

28

ORIGINAL PAGE IS
OF POOR QUALITY

TD N DO
1 TO 4 DO

F O

14 BYNCTAR)3

13

14
17

&2

4 D)

“y by LE

T¥

[t

B XP ey TR»XE D3

.
i

&7

e
24
29

30

/B3

N I

CUOTPy TR d3= 0 XPy TR 2/ BF3

- 4 THEN

s XL T 4 DO

I W T RS W= N WA

4 D)

B LaJsXESTZ 3= BL LeudsTEYIR 0 - BR X ELZE
EERVENEE

END #

]
T

43

a4 q

4%

J s 4 DO

ToJdoTRPTE Him BU Lede XELTS D - BRox EI3C W
s o+ 33

EIND &

4
47

e GO T X O8= O XeTE 0 - BR % CC TPy TE O3

ENDd O FOR T
TF T2
N THEN

l‘(?
a0 . TO 4 DO

moRL LeyTPy TR, XT3

gy
ne

o3

S Ty TELy T D8 B My TELyXTL 0 - BRow BLEC O 05
o= oo 3%

END #

‘ Trde XEL T2 Q8= AL TedyTELT2 0 ~
=)+ 3%

= 3 THEN
Ai= GO TEL T~ BRox G0 0 TE I8

6H0
&

I H H H - T

-~

END 1n
FEND §
ENDS L OFOR IR

o~

&2 SYMCROZCC SYNCTAE) §

B N W

~

EF BACKSUBSTITUTION ALGORITHMI
1TO N DO

CEOLLMM G
; Tt

&4

&5

ol) GOy TR

64
&7

FND §
SYNCRO2CC SYNCTAE) F

170 N DO

R L Y I N

e il e i i el o B R T IOy S I U P U P P P

=) AMND (I = 1 ANMD D e)Y THEN

~

1 D0

T ow DU TR

B ULy TR -~ By Ty TE

*

<

F P O T 8 R A T T A R

NEE-N

FEMND

200 BYNCTAR D
BYNCROZEC SYNCTAE
END 3§
END §

- er

I NS N R P S IR

ORIGINAL PagE |g

“ OF POOR QuaLITY

192
193
194
195
194
197

KHKK G

KA AOK

wKKK BET

198
199
ann

NW 1 i ‘7YNf‘1 ﬁ
T (Nfirf Th »3

UMF 0 FXT ERNAL
CLIMED EX

sk NOD ERRORES) AND MO WARNING(S) DETE CTED

MG TRUCTIONS

ORIGINAL PAGE Is

OF POOR QUALITY

32

References

. Kascak, A.F.: Direct Integration of Transient Rotor Dynamics. NASA

TP-1597, 1980.

. Blech, R.A.; and Arpasi, D.J.: Hardware for a Real-Time Multiprocessor

Simulator. NASA TM-83805, 1985.

. Arpasi, D.J.: Real-Time Multiprocessor Programming Language

(RTMPL) User’s Manual. NASA TP-2422, 1985.

. Cole, G.L.: Operating System for a Real-Time Multiprocessor

Propulsion System Simulator, User’s Manual. NASA TP-2426, 1985.

. Arpasi, D.J.; and Milner, E.J.: Partitioning and Packing Mathematical

Simulation Models for Calculation on Parallel Computers. NASA
TM-87170, 1986.

. Ortega, J.M.; and Voigt, R.G.: Solution of Partial Differential Equations

on Vector and Parallel Computers. SIAM Rev., vol. 27, no. 2, June
1985, pp. 149-240.

7. Lord, R.E.; Kowalik, J.S.; and Kumar, S.P.: Solving Linear Algebraic
Equations on a MIMD Computer. Proceedings of the 1980 International
Conference on Parallel Processing, IEEE, 1980, pp. 205-210.

8. Hockney, R.W.; and Jesshope, C.R.: Parallel Computers. Adam Hilger
Ltd., Bristol, 1981.

9. Resident PASCAL User’s Manual. Motorola Inc., M68KPASC (D4),
1982.

10. Padua, D.A.; and Wolfe, M.J.: Advanced Compiler Optimizations for
Supercomputers. Commun. ACM, vol. 29, no. 12, Dec. 1986,
pp. 1184-1201.

11. Blech, R.A.: The Hypercluster: A Parallel Processing Test-Bed for
Computational Mechanics Applications. NASA TM-89823, 1987.

NASA

National Aeronautics and
Space Administration

Report Documentation Page

. Report No.

NASA TP-2892

2. Government Accession No.

. Recipient’s Catalog No.

. Title and Subtitle

Parallel Gaussian Elimination of a Block Tridiagonal Matrix

Using Multiple Microcomputers

. Report Date

February 1989

. Performing Organization Code

National Aeronautics and Space Administration

Lewis Research Center
Cleveland, Ohio 44135-3191

7. Author(s) 8. Performing Organization Report No.
Richard A. Blech E-4199
10. Work Unit No.
505-62-21
9. Performing Organization Name and Address

11.

Contract or Grant No.

13.

Type of Report and Period Covered
Technical Paper

12.

Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, D.C. 20546-0001

14. Sponsoring Agency Code

15.

Supplementary Notes

16.

Abstract

The solution of a block tridiagonal matrix using parallel processing is demonstrated in this report. The
multiprocessor system which obtained the results and the software environment used to program that system are
described. Theoretical partitioning and resource allocation for the Gaussian elimination method used to solve the
matrix are discussed. The results obtained from running one-, two-, and three-processor versions of the block
tridiagonal solver are presented. The PASCAL source code for these solvers is given in the appendix, and it may
be transportable to other shared-memory parallel processors, provided that the synchronization routines are

reproduced on the target system.

17.

Key Words (Suggested by Author(s))

Parallel processing
Numerical methods
Microcomputer

18. Distribution Statement

Unclassified — Unlimited
Subject Category 62

19. Security Classif. (of this report)

Unclassified

20. Security Classif. (of this page)
Unclassified 36

21. No of pages

22. Price*
A03

NASA FORM 1626 OCT 86

*For sale by the National Technical Information Service, Springfield, Virginia 22161

NASA-Langley, 1989

